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Abstract— This paper presents a decentralized task allocation
strategy for heterogeneous multi-robot systems to minimize
makespan during mission execution. The approach leverages a
Gossip-based consensus mechanism, where robots communicate
and exchange task information to optimize task distribution.
The problem is modelled as a Multi-Robot Task Allocation
(MRTA) challenge with the objective of minimizing task com-
pletion time (makespan). The proposed heuristic algorithm
operates by iteratively improving task sequences via local
exchanges between robots. Simulations demonstrate the algo-
rithm’s effectiveness in assigning tasks while considering vari-
ous robot capabilities and environmental constraints, resulting
in improved mission performance and reduced overall task
completion time.

Index Terms— Multi-Robot System (MRS), Task Allocation,
Gossip Algorithm, Decentralized Optimization.

I. INTRODUCTION

This paper explores inspection planning in industrial set-
tings using a Multi-Robot System (MRS), with particular
attention to high-risk areas where hazardous materials are
produced, handled, or stored. Monitoring these environ-
ments plays a key role in preventing accidents and ensuring
the safety and security of operations. Multiple autonomous
robots are favored over manned systems due to their cost-
effectiveness. While autonomous inspection technology is
still advancing, strategic planning is needed to maximize the
efficient use of multiple vehicles and keep inspection costs
low. Coordinating Unmanned Ground Vehicles (UGVs),
Unmanned Aerial Vehicles (UAVs), and even Unmanned
Surface Vehicles (USVs) presents an effective solution for
collecting inspection data through their integrated sensors.

In practical operations, missions are often planned manu-
ally by experts. To streamline this process, it is essential to
equip robots with decision-making algorithms that efficiently
distribute tasks. These algorithms must also determine the se-
quence of tasks for each robot, the type of information to be
gathered, and the order in which tasks should be completed.
Some areas in the environment may require multiple tasks
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and thus multiple robots, while others, which are less critical,
may require fewer. The solution involves assigning specific
target locations to each robot and arranging their tasks into
a sequence analogous to the Traveling Salesman Problem
(TSP). Each robot performs a subset of measurement tasks
within these locations, ensuring that the team completes the
entire mission across all locations at the lowest possible
cost. Moreover, the coordination can be either centralized
or decentralized.

Multi-robot patrolling problems have been extensively ex-
plored in the literature [1], [2], which has led to the investiga-
tion of Multi-Robot Task Allocation (MRTA) problems with
scheduling [3], [4]. MRTA focuses on coordinating robots
to perform multiple tasks with the goal of optimizing a spe-
cific objective function. Various researchers have introduced
strategies and taxonomies to assist in addressing MRTA.
Gerkey and Matarić [5] introduced a taxonomy to classify
these problems based on robot capabilities, task demands,
and time constraints. The term Single-Task robots (ST) refers
to scenarios in which robots are limited to executing one
task at a time, while Multi-Task robots (MT) denotes robots
capable of handling multiple tasks simultaneously. Tasks can
be either Single-Robot tasks (SR) or Multi-Robot tasks (MR),
depending on the number of robots required for completion.
In Instantaneous Assignment (IA), robots are assigned tasks
one at a time, with no future planning involved, while Time-
extended Assignment (TA) involves allocating a sequence of
tasks to each robot over a defined planning period.

This paper focuses on missions involving multiple mobile
robots, each outfitted with sensors to take measurements
at various locations throughout an industrial setting. It is
important to highlight that a robot can collect multiple
measurements at a single location if it has the necessary
sensors. Designing missions for teams of robots that leverage
their combined capabilities introduces new limitations and
complexities not considered in previous models. In previous
studies, the authors focused on centralized methods [6], [7]
based on Genetic Algorithms (GA) to establish a founda-
tional ground for the system under a single decision maker.
Centralized approaches are often easier to implement, allow-
ing for efficient coordination and management. However, for
scalability, decentralized mechanisms are more suitable. In
this work, we shift our focus to decentralized mechanisms
to address these limitations, providing greater flexibility.

The rest of the paper is organized as follows. A summary
of the related work on decentralized MRTA planning is
presented in the next section. Then, the studied problem
is formalized in Sections III and IV. Details about the
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Gossip algorithm are provided in Section V. The results are
presented and discussed in Section VI through a scalability
analysis. Finally, the conclusion and perspectives are pre-
sented in Section VII.

II. LITERATURE REVIEW

The MRTA problem can be solved using one of three main
strategies: market-based, optimization-based, or behavior-
based approaches. It has been shown that optimization-based
approaches are the most effective [4]. For optimization-based
approaches, there are two main categories: exact approaches
and approximate approaches. Approximate methods have
been adopted in the MRTA literature because of their rea-
sonable computational complexity for large-scale problems.

Decentralized methods have become increasingly popular
in this field due to their scalability benefits compared to
centralized approaches. Studies indicate a growing prefer-
ence for decentralized approaches in multi-robot coordina-
tion [4]. These methods operate based on predefined rules,
shared knowledge, or simulated interactions embedded in
the algorithm. For instance, many decentralized algorithms
employ consensus algorithms, in which each robot makes
decisions based on local information or predictive models of
the actions of other robots.

Shorinwa et al. [8] presented a distributed algorithm that
uses consensus to solve a MRTA problem without a central
unit, enabling optimization through local communication
with neighbors. Their approach includes three algorithms
that balance computational efficiency and communication
requirements, achieving faster and optimal solutions for
linear and convex problems, as demonstrated in surveil-
lance tasks. Additionally, Kalempa et al. [9] introduced a
consensus-driven fault-resilient scheduling mechanism for a
MRS in smart factories. Their method employs a hierarchical
decision-making model with fuzzy controllers to ensure task
reallocation and system robustness in the event of robot
failures. The approach was tested in virtual warehouse en-
vironments. O’Brien et al. [10] presented a MRTA system
for coordinated exploration in underground environments.
Their approach uses a consensus-based auction protocol for
dynamic task allocation, enabling robots to autonomously
explore and adapt to changing conditions while reducing
communication breakdowns. Furthermore, Mahato et al. [11]
introduced a strategy that relies on synchronous transmis-
sion interactions to address issues arising from unstable or
unavailable network infrastructures. This strategy aims to
achieve efficient consensus while limiting the exchange of
information during the distributed task allocation process.

In addressing the problem presented in this paper, authors
in [12] proposed a consensus-based approach that effectively
integrates both ascending and descending consensus strate-
gies for task assignment. Moreover, they employed a 2-opt
local search method to determine the routing.

Based on this literature review, we propose adopting a
Gossip-based algorithm (a decentralized consensus method)
[13], [14], [15], [16] to improve scalability and compared
to [12]. While [15], [16] address other application domains,

our variant explicitly incorporates heterogeneity in both robot
capabilities and task types. In contrast to [12], which depends
on structured consensus steps, we leverage pairwise gossip
exchanges to achieve flexible and efficient task redistribution,
combined with 2-opt routing for local path optimization.

III. PROBLEM STATEMENT

The problem addressed in this paper involves heteroge-
neous robots equipped with different types of sensors that
must perform various tasks subject to different requirements
and constraints. The MRTA problem considered here is to
assign a set of measurement tasks to a set of robots in a way
that yields good performance with respect to the objective
function (minimizing the cumulative energy consumption or
time). Note that a task is defined as a pair consisting of
a specific location and a given measurement, so a single
robot is responsible for completing a measurement operation.
Additionally, a robot can carry out one or more activities
simultaneously. So, this study is classified as MT-SR-TA [5].

The mission environment is represented by a grid-based
map forming a two-dimensional mesh of size (Nx × Ny),
over which R mobile robots R = {r1, . . . , rk, . . . , rR}
navigate (a 2D representation is employed, assuming that
UAVs maintain a constant flight level). The system consists
of V cells, identified by the set V = {v1, . . . , vj , . . . , vV }
with central coordinates (xj , yj). These cells have specific
dimensions based on the problem’s needs. Thus, the envi-
ronment is represented as a weighted graph G = (V, E),
where E is the set of edges connecting the cells. The weight
function W : E × R → R+ assigns a positive weight to
each edge for a given robot. Every edge e ∈ E connects two
vertices vj , vj′ ∈ V for a given robot rk and has an associated
elementary cost W ((j, j′), k) = c̃(j, j′, k) > 0. It is essential
to note that moving directly from vj to vj′ is not possible if
the cells are not adjacent, in which case c̃(j, j′, k) = ∞. This
representation provides a practical approach to describing the
state space, enabling the calculation of travel costs between
positions while accounting for obstacles.

Multiple measurements must be performed at specific
locations, referred to as ”sites,” within the environment.
The set of sites to be visited is represented as A =
{a1, . . . , ai, . . . , aA}, where A ⊆ V and A denotes the
number of sites. The robots begin and end their tour at the
common site a1 (the depot), where no specific assignment
is required. The set M = {m1, . . . ,mq, . . . ,mM} denotes
the range of measurement types, which likely corresponds
to the diverse data or information the robots are required
to collect during their mission. The set of tasks that the
robots must perform to complete the mission is defined
as J = {j1, . . . , jt, . . . , jJ}, where J represents the total
number of tasks. In this context, a task jt = (i, q) is defined
as a measurement of type mq ∈ M to be performed at a
specified site ai ∈ A. Additionally, we define the function
T : A×M → {0, 1} as follows:

ti,q =

{
1, if (i, q) ∈ J ,

0, otherwise.



As mentioned earlier, the mission considers a group of
R mobile robots equipped with sensors for task execution.
Each sensor is designed for a specific measurement, thereby
forming the set M of all sensor types. Each robot rk ∈ R
is equipped with a set of sensors Mk ⊆ M. We define the
function P : R×M → {0, 1} as follows:

pk,q =

{
1, if mq ∈ Mk,

0, otherwise.

The movement cost between two given sites ai and aj for
a robot rk is defined as an elementary cost c(i, j, k), which
can be interpreted as the time required by rk to move from
ai to aj . This cost is determined using Dijkstra’s algorithm,
which computes the shortest path between every pair of sites
based on the previously defined elementary costs between the
cells in the graph. The objective of this optimization is to
minimize the makespan function by organising the sequences
of tasks, represented as S(k) for each robot rk.

Definition 1. A MinMax (makespan) function, which
optimizes the highest individual cost among the team of
robots, C : {S(k), rk ∈ R} → R+, is defined as:

Cmax = max
rk∈R

C(S(k)) (1)

The problem can be formalized using Mixed Integer
Linear Programming (MILP) as detailed in Equations (2)
to (7). The boolean decision variable xk

i,j is defined as:

xk
i,j =

{
1, if rk ∈ R travels from ai ∈ A to aj ∈ A,

0, otherwise.

Furthermore, the integer decision variable uk
i ∈ N+

determines the order in which robot rk visits site ai within
its assigned mission.

min max
rk∈R

∑
ai,aj∈A

xk
i,j × c(i, j, k) (2)

s.t.
∑
ai∈A

xk
1,i = 1 ∀rk ∈ R (3)∑

aj∈A
xk
i,j =

∑
aj∈A

xk
j,i ∀ai ∈ A, ∀rk ∈ R (4)

uk
i + xk

i,j ≤ uk
j + (A− 1)× (1− xk

i,j),

∀ai ∈ A, ∀aj ∈ A \ {a1}, ∀rk ∈ R
(5)∑

ai,aj∈A
xk
i,j × c(i, j, k) ≤ Bk ∀rk ∈ R (6)

∑
rk∈R

∑
ai∈A

pk,q × xk
i,j ≥ tj,q,

∀mq ∈ M, ∀aj ∈ A
(7)

Equation (2) defines the cost function, which aims to min-
imize the highest cost among the robots in the MinMax
optimization. Equation (3) specifies that each robot must start
the mission from the depot a1. Equation (4) mandates that
every entry into a site must correspond to an exit, ensuring
a return to the depot. Equation (5) eliminates any subtours,
thereby ensuring the formation of directed cycles within each

robot’s sequence [17]. Additionally, to address the autonomy
limitations of the robots, Constraint (6) requires that the total
mission cost for each robot rk does not exceed Bk. Lastly,
Constraint (7) guarantees that every task is completed by a
robot equipped with the appropriate sensor.

IV. BOUNDING THE OPTIMAL SOLUTION

In this section, we establish both lower and upper bounds
for the optimal solution of the problem, denoted as C∗. These
bounds help in evaluating the efficiency of the heuristic
considered later in this paper by providing a constant-factor
approximation to the optimal solution.

A. Lower Bound: LP Relaxation

Definition 2. The optimal solution C∗ is lower bounded
by solving the LP relaxation of the MILP formulation. This
relaxation provides an efficient means of estimating the lower
bound on C∗ [17].

The MILP formulation presented in the previous section
includes binary and integer decision variables xk

i,j and uk
i ,

which define the sequencing of robots in the scheduling
framework. To obtain a relaxed version of the problem, we
allow these variables to take continuous values within their
respective domains, leading to an LP relaxation:

0 ≤ xk
i,j ≤ 1, ∀rk ∈ R, ∀ai, aj ∈ A (8)

uk
i ∈ R+, ∀rk ∈ R, ∀ai ∈ A (9)

By relaxing these variables, the feasible solution space is
expanded, allowing fractional values for decision variables.
Consequently, the LP relaxation provides an objective value,
denoted as CLB , which serves as a lower bound on the opti-
mal makespan C∗ of the original MILP problem. Although
the LP relaxation ignores integer constraints and the solution
obtained may not be feasible for the original problem, it still
offers a valuable benchmark for evaluating heuristics.

B. Upper Bound Computation via Monte Carlo Simulations

Definition 3. The optimal solution C∗ can be upper
bounded by employing heuristic-based simulations such as
Monte Carlo methods. These approaches enable the esti-
mation of CUB by generating feasible solutions through
randomized task assignments and travel sequences.

Monte Carlo simulations offer a practical approach for
constructing upper bounds by iteratively producing potential
solutions and evaluating their makespan values. The general
procedure for estimating an upper bound using Monte Carlo
simulations is as follows:

1) Generate multiple feasible solutions by randomly as-
signing tasks to robots across several independent
simulation runs.

2) Evaluate the makespan for each generated solution,
ensuring that all constraints are met.

3) Identify the minimum makespan value observed across
all simulated scenarios, which serves as the estimated
upper bound CUB .

The effectiveness of this approach depends on the number
of iterations performed. By increasing the number of Monte



Carlo trials, the probability of obtaining a reliable upper
bound improves, thereby reducing the gap between CUB

and the true optimal value C∗. Comparing CUB with the
LP-based lower bound CLB provides a measure of solution
quality and indicates the need for further refinements in
problem-solving approaches.

V. GOSSIP-BASED HEURISTIC APPROACH

A. Algorithm strategy and workflow

This section introduces the decentralized Gossip Heuristic
algorithm for solving the task allocation problem outlined in
the previous section. The Gossip algorithm is a decentral-
ized communication protocol commonly used in distributed
systems. In this protocol, nodes (or processes) periodically
exchange information with randomly selected peers, enabling
the spread of data such as updates, state information, or
failure reports across the network. In the context of our
robotic problem, the nodes represent the robots, and the data
consists of the tasks to be assigned. Each time two robots
engage in Gossip, they exchange information about tasks,
potentially redistributing them for better allocation.

Algorithm 1: Decentralized Gossip Heuristic

1 Compute an initial feasible sequence of tasks for
each robot.

2 Compute a list of possible robot pairs for task
exchange, where each pair has at least one common
sensor: possible pairs.

3 F = 1
4 while F = 1 do
5 F = 0
6 Shuffle the order of possible pairs randomly.
7 foreach pair in possible pairs do
8 (a) Apply Algorithm 2 on the current pair;
9 (b) If the solution is improved, set F = 1

In the decentralized Gossip Heuristic (Algorithm 1), robots
update their assignment based on the task exchange mecha-
nism presented in Algorithm 2. It is designed to optimize task
allocation for the problem at hand in a decentralized manner.
Initially, each robot computes a feasible sequence of tasks it
can perform. A list of possible robot pairs, where each pair
shares at least one common sensor, is generated for potential
task exchanges. The algorithm operates in a loop where each
iteration involves randomly shuffling the order of possible
pairs and sequentially applying the task exchange mecha-
nism (Algorithm 2) to each pair. Unlike randomized gossip
protocols that typically rely on local, probabilistic peer inter-
actions, our algorithm systematically evaluates all possible
pairs of compatible robots in each iteration. This strategy
ensures broader task exchange opportunities across the team,
increasing the likelihood of improving task sequences. By
combining deterministic coverage with randomized order, the
method enables an efficient optimization of assignments.

Algorithm 2: Task exchange mechanism between
robots rk and rq for MinMax minimization

Input: Task sequences S(k), S(q) for robots rk, rq
1 Assumption: C(S(q)) < C(S(k))
2 Let Jex be the set of tasks assigned to robot rk that

robot rq is capable of performing.
3 while Jex ̸= ∅ do
4 (a) Randomly select a task tj ∈ Jex;
5 (b) Update the set of exchangeable tasks:

Jex = Jex \ {tj};
6 (c) Add tj to the sequence of robot rq: set

Snew(q) = 2-opt
(
S(q) ∪ {tj}

)
;

7 (d) if C(Snew(q)) < C(S(k)) then
8 Update the sequences: set S(q) = Snew(q)

and S(k) = S(k) \ {tj}.

Algorithm 2 describes the protocol for exchanging tasks
between two robots rk and rq . Initially, the algorithm takes
as input the sequences of tasks currently assigned to each
robot in the pair. Then, a set of exchangeable tasks Jex

is identified. This set represents the tasks that both robots
can perform and are assigned to the robot with the higher
cost sequence (assumed to be rk). Afterwards, the algorithm
proceeds as long as there are tasks available in the exchange-
able tasks set. Within each step, a task is randomly selected
from this set and added to the sequence of the robot that has
the lower cost. This addition requires determining the best
position at which to insert tj in the sequence; hence, the 2-
opt algorithm is applied at this stage (2-opt is an optimization
technique typically employed to improve routes by removing
and replacing segments of a path that intersect) [7]. After
updating the task sequence for the robot with the lower cost,
the algorithm checks whether the cost of this newly updated
sequence is still lower than the cost of the original task
sequence of the other robot. If this condition is satisfied,
it indicates that the task exchange has resulted in a more
efficient (or, in the worst case, equivalent) allocation of tasks.
Consequently, the task sequences are updated: the new task
sequence for robot rq becomes the updated sequence, while
robot rk removes the exchanged task from its own sequence.
This iterative process continues until there are no more tasks
left in the set Jex.

The decentralized Gossip Heuristic algorithm is a fast
and highly efficient approach for task allocation in robotic
networks. By systematically exploring all possible task ex-
changes among robot pairs, it rapidly converges to high-
quality solutions while significantly reducing the likelihood
of being trapped in local optima. This ensures enhanced
overall performance. Moreover, its architecture enables good
scalability, making it ideal for large-scale systems.

B. Characterization of the Gossip-based heuristic

Proposition 1. The decentralized Gossip Heuristic
algorithm terminates in a finite number of iterations.



Proof. Let Cmax(t) denote the makespan at iteration t.
The algorithm improves the solution if and only if:

Cmax(t+ 1) < Cmax(t)

or retains the current solution if:

Cmax(t+ 1) ≥ Cmax(t)

Since each task exchange either reduces or maintains the
makespan, the sequence is non-increasing:

Cmax(1) ≥ Cmax(2) ≥ Cmax(3) ≥ . . .

The number of possible configurations is finite due to
the finite number of tasks and robots. Since the algorithm
strictly improves or retains the makespan without revisiting
worse configurations, it must eventually reach a state
where no better assignment is possible. Thus, the algorithm
terminates in a finite number of iterations. □

Proposition 2. The time complexity of one iteration of
Algorithm 1 is given by:

O
(
J ·R2

)
Proof. At each iteration, the algorithm evaluates a maxi-

mum of R(R−1)
2 pairs of robots, which amount to:

R(R− 1)

2
= O(R2)

For each pair, the algorithm considers up to J task ex-
changes. The task exchanges involve updating task sequences
and recalculating costs, which have a constant complexity per
operation. Hence, the complexity per iteration is1:

O(J ·R2). □

The next section presents simulation-based validation,
demonstrating the algorithm’s ability to maintain scalability
and performance in extensive robot-task networks.

VI. NUMERICAL SIMULATIONS AND ANALYSIS

In this section, we present numerical results to evaluate the
performance of the proposed algorithm. The analysis is con-
ducted across multiple scenarios involving varying numbers
of robots and tasks to assess the algorithm’s effectiveness in
solving the optimization problem. The evaluation focuses on
two key aspects:

• Solution quality: The obtained results are compared
with both the upper and lower bounds of the optimal
value to understand how closely the algorithm approx-
imates the optimal solution.

• Convergence behaviour: The algorithm’s convergence
is analyzed in terms of the number of iterations re-
quired and the execution time across different problem
instances.

12-opt is excluded from the complexity analysis for simplicity and due
to its non-deterministic number of applications per iteration.

A. Comparison with Upper and Lower Bounds
Figure 1 presents the comparison between three key cost

values: CGO, which corresponds to the solution obtained
by executing Algorithm 1; CLB , the lower bound derived
by relaxing the MILP formulation (Section IV); and CUB ,
the upper bound estimated through Monte Carlo simulations
(Section IV).

Fig. 1. Comparison of the cost value CGO with the upper bound CUB

and lower bound CLB across different scenarios

For each scenario, the values of CGO and CUB are
computed as the mean over 10 independent experimental
runs to account for stochastic variations and ensure statistical
robustness. The results consistently indicate that the cost
value obtained through the Gossip-based heuristic (CGO)
always lies between the upper and lower bounds of the
optimal solution. This confirms that the proposed algorithm
provides a good quality solution.

B. Convergence analysis
To further evaluate the algorithm’s efficiency, we examine

its convergence properties by analyzing two factors: execu-
tion time and number of iterations. We investigate how these
factors vary with the different scenarios considered.

Figure 2 shows the execution time required to reach a
solution by the Gossip-based heuristic for each of the sce-
narios considered in Figure 1. We can see that the algorithm
is very fast, and the execution time does not exceed 0.4 s
for all instances (the method scales well with problem size).
However, the execution time approaches its maximum value
in instances with a few robots and a large number of tasks.
This is primarily due to large-size routing processes with the
2-opt method.

Figure 3 illustrates the number of iterations required
for the Gossip-based heuristic to reach equilibrium across
different scenarios. The observed trends indicate that the
number of iterations depends on the balance between the
number of robots and tasks. Specifically, scenarios with a
larger number of tasks relative to robots tend to require more
iterations before convergence.



Fig. 2. Gossip heuristic execution time across several scenarios

Fig. 3. Number of iterations required for the Gossip-based heuristic to
reach equilibrium across several scenarios

Overall, these findings underscore the effectiveness of the
proposed approach in addressing large-scale MRTA problems
while overcoming scalability challenges often encountered in
centralized methods [6], [7].

VII. CONCLUSION

In this paper, we introduced a decentralized task allocation
approach for heterogeneous MRS based on a Gossip-based
consensus mechanism. The proposed algorithm optimizes the
makespan by iteratively improving task distribution through
local exchanges between robots. The simulations demon-
strated that our heuristic effectively balances task execution
while maintaining a close approximation to optimal solutions
with fast computational time.

Looking ahead, the computation of an upper bound on the
number of iterations of Algorithm 1 should be investigated.
Moreover, we are interested in specific applications like pre-
cision farming [13], [14], particularly within open networks
where robots can freely join or leave (whether by choice
or due to physical constraints) and can execute distributed
algorithms to infer global information about the robot fleet
[18], [19], [20].
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